Portable Hyperspectral Imaging (pHI) for the enhanced recording of archaeological features

crabbn@bournemouth.ac.uk

linkedin.com/in/nicholas-crabb1/

Department of Archaeology and Anthropology, Bournemouth University (UK).

INTRODUCTION

- Physical attributes of archaeological soils and sediments are conventionally recorded through subjective description, digital photography, and illustration.
- More labour-intensive laboratory and geochemical analysis can yield deeper insights into past-human activity but are difficult to implement at large scales.
- 'portable' hyperspectral sensors have the capacity to overcome this by providing an enhanced characterisation and classification of archaeological features 'in situ'.

METHODS

- 1. Record features using a Specim IO pHI at BU's Archaeological Field School.
- 2. Calibration panel used to correct for different light conditions.
- Imagery analysed using ENVI, including PCA and K-Means classification.

RESULTS

- Iron Age pit with silty-clay layers and chalk eroding from the sides was recorded (Fig. 1).
- This contained a later (Roman) grave, which was more clearly defined in a composite image comprising the first three bands of in RGB imagery (Fig. 2).
- The K-Means classification was further successful at defining difference between the chalk-rich and silty clay material (Fig. 3).
- However, analysis of individual spectral profiles was required to elucidate more subtle differences in the composition of materials.

DISCUSSION

- An enhanced definition of materials can be achieved using pHI and through image processing / classification.
- Spectral differences likely relate to variations in organic content, but other parameters (e.g. geochemistry) also contribute to this.
- Further comparison with other datasets is required to help clarify this.

the PCA, than
TI 1/ N/

Haburaj et al. 2020. Coupling spectral imaging and laboratory analyses to digitally map sediment parameters and stratigraphic layers in Yeha, Ethiopia. PLOS ONE, 15, 9: e0238894. DOI: 10.1371/journal.pone.0238894.

Linderholmet al. 2019. Near infrared and hyperspectral studies of archaeological stratigraphy and statistical considerations. *Geoarchaeology*, 34, 3 : 311-321. DOI : 10.1002/gea.21731.

Sciuto et al. 2022. What Lies Beyond Sight? Applications of Ultraportable Hyperspectral Imaging (VIS-NIR) for Archaeological Fieldwork. *Journal of Field Archaeology*, 47, 8:522-535. DOI:10.1080/00934690.2022.2135066.