Humans have endangered their World Heritage Sites

by amplifying extreme weather events s

Site Trajectories of extreme heat events at 12 WHS
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Global trends of extreme heat days (Tx9op)

Fig. 2 Global changes in extreme heat days (Tx90p) relative to pre-industrial Recent past (2000-2014) relative to pre-industrial Far future (2070-2100) relative to pre-industrial
baseline (1850-1900).

Extreme heat days (Tx90p) have incrased globally, with tropi-
cal heritage sites facing the greater increases. Compared to a
pre-industrial baseline, we reveal:

©2000-2014: Tropics gained 50-150 additional heat days due
to human influence.

¢2070-2100 (SSP2-4.5): Projected >250 days/year across sub-

and tropics, indicating the historic extremes will become the
“new normal” (Fig. 2).
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Regional exposures to drought days (CDD)

-egend We revealed the anthropogenic contribution to con-
N secutive drought days (CDD): the longest sequence of
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vas days with <1 mm precipitation by comparing the fac-

tual and counterfactual scenarios at a regional scale.
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e Highest exposure: Mediterranean and West Asia (+8-
12 drought days), impacting >200 WHS.
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Fig. 3a: Anthropogenic contribution to consecutive drought Fig. 3b: Regional averages of CDD changes, scaled by the
days (CDD) at WHS grid cells. number of WHS per IPCC-defined region.
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Vulnerable WHS in the face of heavy rainfall events (R95p)
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Fig. 4a: anthropogenic R95p impact levels at WHSs located in Fig. 4b: anthropogenic R95p impact levels at WHSs located in Fig. 4c: Distribution of WHSs across income catego-

low-income countries. high-income countries. ries by R95p impact level.

To assess vulnerability, we examined anthropogenic shifts in R?5p: days when precipitation exceeds the 95th percentile of the preindustrial baseline, cate-
gorized by national income levels from World Bank data (Fig. 4a-c):

| ow-income countries: ~50% of WHS (28) face moderate-high rainfall increases. Limited adaptation capacity deepens inequalities.
*High-income countries: ~60% ot WHS (317) show low impacts. Even have higher capabilities, these sites need nuanced investigations.
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